Anderton Primary School Maths Mastery Calculation Policy

Date for next review:
Signed :
Signed :

Objective, Strategy Key Vocabulary	Concrete	Pictorial	Abstract
Comparing Objects, groups of objects Length, weight, mass, heavier, lighter, same, equal	People's height, distance, mass. Use of pan balances using Numicon or similar to show equivalence, < > Comparing multiple objects Use of concrete materials eg. Compare bears, jewels, cubes etc to create groups of different sizes to compare		
Using $<>$ and $=$ Fewer, more, less than, more than, equal to, fewer than	Use a multilink staircase in two colours		Use variation with missing boxes and missing symbols. $\begin{aligned} & 3 \bigcirc 4 \\ & 2 \bigcirc 2 \\ & 2 \bigcirc 2 \\ & 2<6 \end{aligned}$
Finding one more, finding one less			One more/less sentences - example one: 1 more than 3 is \square 1 less than 2 is \square 1 more than \square is 1 1 less than \square is 1

Objective, Strategy \& Key Vocabulary	Concrete	Pictorial			Abstract
Adding 1 gives 1 more		Then	Now	6	
Augmentationincreasing an amount	Use FIRST, THEN, NOW and range of practical situations for showing augmentation. E.g. first there were three chn on carpet then 2 more came. Now there are 5 chn on the carpet.			4	
Stories of numbers within 10	Children should work with doubled sided counters and ten frame. Start with 7 red, turn one over, tell me the 'story'? Turn one more over. What is the 'story'? Continue. Complete this for stories of all numbers up to 10.		$\begin{aligned} & 7+0=7 \\ & 6+1=7 \\ & 5+2=7 \\ & \text { efic } \end{aligned}$ Complete for all numbers up to 10		$\begin{aligned} & 7+0=7 \\ & 6+1=7 \\ & 5+2=7 \\ & 4+3=7 \\ & 3+4=7 \\ & 2+5=7 \\ & 1+6=7 \\ & 0+7=7 \end{aligned}$

Objective, Strategy Key Vocabulary	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together	5 3 $4+3=7$ $10=6+4$ Use the part whole diagram as shown above to move into the abstract.
Regrouping to make $10 .$ This is an essential skill for column addition later.	cepecece 2 more than 5 .	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	Start with the bigger number and use the smaller number to make 10. Use ten frame	Use pictures or a number line. Regroup or partition the smaller number using the part whole model to make 10. $9+5=14$ 14	Emphasis should be on the language ' 1 more than 5 is equal to 6 .' '2 more than 5 is 7. ' ' 8 is 3 more than 5 .'

+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Adding multiples of ten	Model using dienes and bead strings	\qquad tens and \qquad tens makes \qquad tens Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \\ & \square+30=50 \end{aligned}$
Use known number facts Part part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20-\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$
Using known facts		Children draw representations of H, T and O	$3+4=7$ Leads to $30+40=70$ Leads to $300+400+700$ ' 3 things and 4 things is always 7 things'
Bar model		8	30
	$3+4=7$	$3+5=8$	$14+16=30$

Objective, Strategy Key Vocabulary	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $17+5=22$ $27+5=32$	Use part-partwhole and number line to model.	22 $5+5=22$ 17 Explore related $17+5=22$ $17+5$ $5+17=22$ $22=5+17$ $22-17=5$ $17=22-5$ $22-5=17$ $5=22-17$
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} 27+10 & =37 \\ 27+20 & =47 \\ 27+\square & =57 \\ \square+30 & =67 \end{aligned}$
Add two 2-digit numbers without bridging. 'Friendly numbers'	Model using dienes, place value counters and numicon Dienes and part-part-whole model:	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \quad 40+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$

Objective, Strategy Key Vocabulary	Concrete	Pictorial	Abstract
Add any two 2-digit numbers	Dienes and part-part-whole model:	$26+30+7$	$24+38=$ \square $29+$ \square $=51$ $38+24=$ \square \square $+22=51$
Add three 1-digit numbers	Combine to make magic 10 first where relevant, or bridge 10 then add third	Use language of fist, then, then, now Pictorial: Use part part whole to show magic ten	$\begin{aligned} \frac{4+7}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.
Adding two numbers that bridge 10 .	Use double sided counters and ten frames. Move counters to fill the ten frame and make Magic 10	Show on a number line how 5 is portioned into adding three, then adding 2.	

Objective, Strategy Key Vocabulary	Concrete	Pictorial	Abstract
	When moving from concrete to pictorial, show concrete alongside pictorial. Show pictorial alongside abstract when moving to abstract.		
Column Addition-no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 248 \\ +131 \\ \hline 379 \\ \hline \end{array}$ Add the ones first, then the tens, then the hundreds.
Column Addition with regrouping. Use language of 'take and make' to describe carrying	Exchange ten ones for a ten. Model using numicon and pv counters.	Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	Use expanded method ONLYwhen needed

Objective , Strategy Key Vocabulary	Concrete	Pictorial	Abstract
Y4—add numbers with up to 4 digits	Children continue to use dienes or pv counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	\bullet \ddots \bullet \because $\because \bullet$ $\bullet \bullet$ \bullet \ddots $\ddots \bullet$ \bullet 7 1 5 1 \bullet \bullet Draw representations using pv grid.	$\begin{array}{r} 2634 \\ +4517 \\ \hline 7141 \\ \hline 11 \end{array}$ Continue from previous work to carry ones, tens and hundreds. Relate to money and measures.
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	As year 4 Introduce decimal place value counters		
Y6-add several numbers of increasing complexity Including adding money, measure and decimals with different numbers of decimal points.	Some children may need to ruse manipulatives and/or representations for longer. See year 5		

Objective, Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part-Part-Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the parts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. $\begin{aligned} & 12-5=7 \\ & 12-7=5 \\ & 7=12-5 \\ & 5=12-7 \end{aligned}$
Subtract by making ten	15-9 Make 15 on the ten frame. Take 5 away to make ten, then take 4 more away so that you have taken 9. 15-9 $\begin{aligned} & 15-5=10 \\ & 10-4=6 \\ & 15-9=6 \end{aligned}$	$15-9$ Jump back 5 first, then another 4 . Use ten as the stopping point.	$16-9$ How many do we take off first to get to 10? How many left to take off?
Compare numbers by finding the difference.	There are 2 more pencils than erasers.	$5-3=2$ Use a number line to count on..	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister?

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting by making 10	15-9 =. Make 15 on the ten frame. Take 5 away 15-9 to make ten, then take 4 more away so that you have $15-5=10$ $10^{-4}=6$ $15-9=6$	Jump back 5 first, then another 4. Use ten as the stopping point.	$16-9=$ How many do we take off first to get to 10? How many left to take off? ?
Counting on to next ten Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	$34-28=$ $34-28$ Use a bead bar or bead strings to model counting to next ten and the rest. 28 to 30 is 2,30 to 34 is 4 . So, $34-28=6$	Use a number line to count on to next ten and then the rest. Begin with bead line, move to landmarked line then to ENL.	
Subtractions as difference			The difference between 24 and 16 is 8.

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting a multiple of 10	$32-10=22$ Children use dienes, PV counters or Numicon. They remove the correct number of tens	$\left\|\left\|\|\|c\| c c\| \begin{array}{cc} 0 & 0 \\ 0 & \begin{array}{l} \text { Children draw } \\ \text { rods and cu- } \\ 0 \end{array} \\ \text { bes and cross } \\ \text { off multiples } \\ \text { of ten. } \end{array}\right.\right.$	$\begin{aligned} & 64-10=\square \\ & 64-20=\square \\ & 64-30=\square \\ & 64-\square=24 \\ & \square-50=14 \end{aligned}$
Subtract a single digit from a two digit number No regrouping		$9-3=6$ $19-3=16$	$\begin{gathered} 9-3=6 \\ 19-6=13 \\ 29-6=23 \text { etc } \end{gathered}$
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'.	$20-4=16$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	$43-21=22$ Children draw representations of Dienes and cross off.	$43-21=22$

Objective \& Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	$47-32$ Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -40+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	 Begin by partitioning into pv columns $\begin{array}{ccc} 728 & -582=146 \\ \hline 1 & 9 & 4 \\ { }^{\prime} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \end{array}$ Then move to formal method.

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal point.	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} { }^{2} 8^{10} x^{1} 0{ }^{\circ} 8^{\prime} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for $\begin{array}{r} 67^{10} x^{8} 9 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796.5 \end{array}$ placeholders.
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			$\begin{array}{r} { }^{146} 8 \not 6,699 \\ -89,949 \\ \hline 60,750 \\ \hline \begin{array}{r} 1085 \cdot 3 \end{array} \\ \hline 36 \cdot 089 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

| Objective \& Strategy | |
| :--- | :--- | :--- | :--- | :--- | Use objects laid out in arrays to find the answers to 2 lots of 5 , 3 lots

Objective \& Strategy	Concrete	Pictorial	Abstract
Double a 2-digit number	Model doubling using dienes and PV counters. $40+12=52$	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Understand equal and non-equal groups	These are non- equal groups There are 5 equal groups. Each group has 3 cakes.	Make representations and drawings of equal groups I have 4 groups of 3 .	

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. $5 \times 2=10$ $5 \times 2=10$ 5 groups of 2 2 groups of 5 2, five times 5, two times	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Divisibility rules in 'families' $\mathbf{2 , 4} 4$ and 8

2 A number is divisible by 2 if the ones digit is even.
4 If halving a number gives an even value, then the number is divisible by 4 . and
For numbers with more than two digits: if the final two digits are divisible by 4 then the number is divisible by 4 .
8 If halving a number twice gives an even value, the number is divisible by 8 .

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplying 2-digit by 1 digit using partitioning (distributive law)	4 rows of 10 4 rows of 3 Show the links with arrays to illustrate the PV partitioning Move onto base ten to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	$\begin{gathered} 4 \times 10=40 \\ 4 \times 3=12 \\ 40+12=52 \end{gathered}$
2 digit x 1 digit using PV counters (no regrouping)	Chn can see array in the ones and the tens. There is a visual link to repeated addition.	Children practice, drawing their representations. 23×3	

Objective \& Strategy	Concrete	Pictorial	Abstract
Understanding the commutative law.	'Three groups of five are equal to fifteen.' 'Five, three times is equal to fifteen.' B - 'Five groups of three are equal to fifteen.' "Three groups of five is equal to five groups of three."		$\begin{aligned} & 3 \times 5=15 \\ & 5 \times 3=15 \\ & 5 \times 3=3 \times 5=15 \\ & 15 \div 3=5 \\ & 15 \div 5=3 \end{aligned}$
Understanding the distributive law	 3 		$4 \times 5=3 \times 5+5=20$ $4 \times 5=5 \times 5-5=20$

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiply 3 digit numbers by 1 digit. (no exchange)	Use place value counters to show how we are finding groups of a number. We are multiplying by 3 so we need 3 rows $123 \times 3=369$ Add up each column, starting with the ones.	Children can represent their work with place value counters by drawing place value counters or Dienes.	231 3×1 ones is three ones $\times \quad 3$ 693 3×3 tens is nine tens 3×2 hundreds is six hundreds
Multiply 3 digit numbers by 1 digit. (with exchange)	 Regroup ten ones to make a new ten.		

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiply decimals up to2 decimal places by a single digit			$\begin{array}{r} 2.38 \\ \times \quad 3 \\ \hline 714 \\ 12 \end{array}$ First we lay out the calculation Next, we write the decimal point in the answer (product). Finally, we carry out the multiplication. 3×8 hundredths is 24 hundredths 3×3 tenths is 9 tenths, add 2 tenths we carried is 11 tenths 3×3 ones is 6 ones, add 1 one we carried is 7 ones
Multiply up to 4 digit numbers by 2 digits.			$\begin{array}{llll} & & x & \\ & 3 & 1 & 2 \\ \times & & 2 & 8 \\ \hline & & 4 & 9 \\ \hline \end{array}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing (partitive)	There are 20 conkers shared equally between 5 children. Each child gets 4 conkers.	Children use pictures or shapes to share quantities. They may use bar modelling to show and support understanding. Number lines are used to show skip counting (counting forwards) and repeated subtraction (counting backwards).	$20 \div 5=4$
Division as grouping (quotitive)	Use cubes, counters or real objects or to aid understanding. There are 15 biscuits, there are 5 in each bag. How many bags?		15 divided into groups of 5 is 3 $15 \div 5=3$

Divisibility rules in 'families' $\mathbf{- 3 , 6}$ and $\mathbf{9}$	
$\mathbf{3}$	For a number to be divisible by 3 , the sum of the digits of the number must be divisible by 3.
$\mathbf{6}$	For a number to be divisible by 6, the number must be divisible by both 2 and 3.
$\mathbf{9}$	For a number to be divisible by 9 , the sum of the digits of the number must be divisible by 9.

Divisibility rules in 'families' - 5 and 10

5 A number is divisible by 5 if the ones digit is 5 or 0.
10 A number is divisible by 10 if the ones digit is 0 .

Objective \& Strategy	Concrete	Pictorial	Abstract
Divide 2 \& 3 digit numbers by 1 digit Short Division	$96 \div 3$ Use place value counters to make groups of the divisor, starting with the largest value digit. There are 3 groups of 3 tens. There are 2 groups of 3 ones. There is 1 group of 3 tens. There is a ten left over. We exchange this for 10 ones. 12 ones divided by 3 is 4 . There is 1 group of 4 hundreds. There are no groups of 4 tens and 3 tens left over. There are 8 groups of 4 ones after exchanging the left over tens.	Students use drawn diagrams with spots or circles to show their understanding.	Begin with divisions that divide equally with no remainder. $\begin{array}{r} 124 \\ 3 \longdiv { 3 7 2 } \end{array}$ Move on to divisions with a remainder. Return to concrete if necessary.

Divisibility rules in numerical order	
$\mathbf{2}$	A number is divisible by 2 if the ones digit is even.
$\mathbf{3}$	For a number to be divisible by 3, the sum of the digits of the number must be divisible by 3.
$\mathbf{4}$	If halving a number gives an even value, then the number is divisible by 4. and For numbers with more than two digits: if the final two digits are divisible by 4 then the number is divisible by 4.
$\mathbf{5}$	A number is divisible by 5 if the ones digit is 5 or 0.

Divisibility rules in numerical order	
$\mathbf{6}$	For a number to be divisible by 6 , the number must be divisible by both 2 and 3.
$\mathbf{8}$	If halving a number twice gives an even value, the number is divisible by 8.
$\mathbf{9}$	For a number to be divisible by 9, the sum of the digits of the number must be divisible by 9.
$\mathbf{1 0}$	A number is divisible by 10 if the ones digit is 0.

Using $\mathrm{x} \& \div$ by 10,100 etc and relating this to a short division method.

$$
\begin{array}{r}
0 \quad 2 \\
3 0 \longdiv { 6 \quad { } ^ { 6 } 0 }
\end{array}
$$

$\top \quad 0$
$3 0 \longdiv { 8 \quad 5 }$

T 0
2
$3 0 \longdiv { 8 \quad 5 }$
60

Subtract the 60 from

the 85 and this leaves

25.

$3 0 \longdiv { 8 \quad 5 }$

$6 \quad 0$

25

30 goes into 85 twice, which is 60 .

85 divided by 30 is 2 with a remainder of

25

Long Division-progressing to $\mathbf{4}$ or more digits

23 goes into 49 twice which is 46 . We subtract this from
49 to give a remainder of 3 .

We combine the 3 left over with the next digit to give 34.23 goes into 34 once with 11 remaining.

TH	H	T	O
	2	1	5
4	9	4	5
4	6		
	3	4	
	$\frac{2}{2}$	3	
	1	1	5
	1	1	5
		0	

We combine the 11 with the
next digit to make 115. 23
goes into 1155 times with
no remainder.

Long Division-procedural summary (remainder in the tens)

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} { }^{10} \\ 2 \longdiv { 2 } \\ \hline 2 \longdiv { 5 8 } \end{array}$ Two goes into 5 two times, or 5 tens $+2=2$ whole tens -- but there is a remainder!	$\begin{gathered} t \circ \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -41 \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18 .

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ =-4 \\ 18 \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} 1 \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -48 \\ \hline 18 \\ -18 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline 0 \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Long Division-procedural summary (remainder in any of the digits)

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{aligned} & { }^{h t \circ} \\ & 2 \longdiv { 1 } \\ & 2 \longdiv { 2 7 8 } \end{aligned}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} { }^{h t \circ} \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h t o \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} \begin{array}{c} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \end{array} \end{gathered}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h 10 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -27 \\ -07 \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{aligned} & h+0 \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -2 \\ & \hline 07 \\ & -\quad 6 \\ & \hline \quad 18 \\ & -18 \\ & \hline \end{aligned}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h+0 \\ & 2 \longdiv { 1 3 9 } \\ & 278 \\ & -27 \\ & -\quad 6 \\ & -18 \\ & -18 \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

